Introduction to Flow Model
Date:
Flow Model
Basic Ideas
Suppose a neural network generator G defines a distribution PG, that is
z∼π(z),x∼PG(x),x=G(z)The optimal model is
G∗=argmaxGm∑i=1logPG(xi)≈KL(Pdata||PG)From the transformation relationship, we have
PG(xi)=π(zi)|det(JG−1)|where π(zi)=G−1(xi). Apply log to both sides, we have
logPG(xi)=logπ(G−1(xi))+log|det(JG−1)|The iteration of multiple models (the flow) is as follows
π(x)→G1→P1(x)→G2→P2(x)→⋯And the we get distribution
PG(xi)=π(zi)|det(JG−11)||det(JG−12)|⋯|det(JG−1K)|,i.e.,logPG(xi)=logπ(zi)+K∑n=1|det(JG−1n)|Coupling Layer
It is easy to find that it is a invertible transformation, on the one hand,
xi≤d=zi≤d,xi>d=βi>dzi>d+γi>don the other hand,
zi≤d=xi≤d,zi>d=xi>d−γi>dβi>dNow we can compute the Jacobian Matrix
[I0∗Diagonal] detJG=∂xd+1∂zd+1∂xd+2∂zd+2⋯∂xD∂zD=βd+1βd+2⋯βD