The $n$’th cyclotomic polynomial $\Phi_n(x)$ is formed by collecting all the linear factors $x-\zeta$ such that $\zeta$ is the $n$’th primitive root of unity, so we can explicitly define it via 为了进一步调试,你可以提供更多关于你的网站的构建环境和部署方式的信息。此外,确认网站的构建日志中是否有任何错误信息,这些信息通常能提供为什么Markdown文件没有被正确处理的线索。如果使用Jekyll等工具,确保所有必需的插件都已安装,并且_config.yml文件中的配置是正确的。如果使用数学表达式,确认是否已启用MathJax或相似的库来渲染这些表达式为了进一步调试,你可以提供更多关于你的网站的构建环境和部署方式的信息。此外,确认网站的构建日志中是否有任何错误信息,这些信息通常能提供为什么Markdown文件没有被正确处理的线索。如果使用Jekyll等工具,确保所有必需的插件都已安装,并且_config.yml文件中的配置是正确的。如果使用数学表达式,确认是否已启用MathJax或相似的库来渲染这些表达式为了进一步调试,你可以提供更多关于你的网站的构建环境和部署方式的信息。此外,确认网站的构建日志中是否有任何错误信息,这些信息通常能提供为什么Markdown文件没有被正确处理的线索。如果使用Jekyll等工具,确保所有必需的插件都已安装,并且_config.yml文件中的配置是正确的。如果使用数学表达式,确认是否已启用MathJax或相似的库来渲染这些表达式
title: “Bidirectional Looking with A Novel Double Exponential Moving Average to Adaptive and Non-adaptive Momentum Optimizers” collection: publications venue: ‘Yineng Chen, Zuchao Li, Lefei Zhang, Bo Du, Hai Zhao’ paperurl: ‘https://proceedings.mlr.press/v202/chen23r/chen23r.pdf’
title: “Fine-Grained Position Helps Memorizing More, a Novel Music Compound Transformer Model with Feature Interaction Fusion” collection: publications venue: ‘AAAI 2023’ paperurl: ‘https://ojs.aaai.org/index.php/AAAI/article/view/25650’
where $\tilde{x}=\epsilon x_{\text{real}}+(1-\epsilon)x_{\text{generated}},\,\epsilon\sim U[0,1], \,x_{\text{real}}\sim P_r, \,x_{\text{generated}}\sim P_g$.
How to make $|f|_L\leq 1$? The answer is to use the Spectral Normalization, that is to replace the parameter $w$ with $w/|w|$ in model $f$.
Transformation of Probability Distribution
Set $X\sim U[0,1],\,Y\sim N[0,1]$. We denote the transformation as $Y=f(x)$ and let $\rho(x)$ be the density function in $X$. Since under the transformation, the prbability lie in $[x,x+dx],[y,y+dy]$ must be equal, thus we have
We say d is weaker then d’ if every sequence that converges under d’ converges under d, thus we have
Theorem: Every distribution that converges under KL, reverse KL, TV and JS also converges under Wasserstein Divergence.
Reference
苏剑林. (Oct. 07, 2018). 《深度学习中的Lipschitz约束:泛化与生成模型 》[Blog post]. Retrieved from https://kexue.fm/archives/6051
苏剑林. (May. 03, 2019). 《从动力学角度看优化算法(四):GAN的第三个阶段 》[Blog post]. Retrieved from https://kexue.fm/archives/6583
Mescheder L, Geiger A, Nowozin S. Which training methods for gans do actually converge?[C]//International conference on machine learning. PMLR, 2018: 3481-3490.
苏剑林. (Jun. 08, 2017). 《互怼的艺术:从零直达WGAN-GP 》[Blog post]. Retrieved from https://kexue.fm/archives/4439
苏剑林. (Jan. 20, 2019). 《从Wasserstein距离、对偶理论到WGAN 》[Blog post]. Retrieved from https://kexue.fm/archives/6280